skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hochberg, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate identification of species is key to understanding their ecological roles and evolutionary history. It is also essential in cataloging biodiversity for comparisons among habitat types, responses to climate change, effective management practices, and more. The paucity of taxonomic expertise is increasing and with it the ability to competently identify species, this is particularly true for small taxa including rotifers. In an effort to improve this situation, we collated information on morphological characters from the literature on all valid species of sessile Gnesiotrocha (phylum Rotifera) currently assigned to two orders and four families. We review Order Collothecaceae, which comprises families Atrochidae (3 spp.) and Collothecidae (50 spp.) and Order Flosculariaceae, which includes families Conochilidae (7 spp.) and Flosculariidae (71 species). Based on that information, we provide dichotomous keys to the Families, monospecific species in Flosculariidae, and species of Atrochidae, Conochilidae, and Limnias. These keys will aid researchers to identify species in these families and lead to a better understanding of freshwater biodiversity and eco-evolutionary processes. 
    more » « less
  2. Most species of Keratella possess dome-shaped, dorsal plates comprising a network of polyhedral units (facets), delineated by slightly raised ridges. The arrangement of facets define a species’ facet pattern (FP), with the resulting structure resembling a geodesic dome. Researchers have sorted species into categories based on their FPs, but those have not been analyzed. Additionally, while a strong lorica has been suggested to protect Keratella from predatory attack or other actions causing blunt force trauma (BFT), we know little of how that occurs. Thus, in our study we tested two hypotheses. (1) There is support for categorizing Keratella species into unique groupings based on their FPs. (2) FPs provide resistance to physical stresses. To test that hypothesis we used the structural analysis software SkyCiv©. Our results indicate support for four FP categories. Additionally, the SkyCiv analysis provided preliminary ‘proof-of-concept’ that Keratella FPs have a functional significance: i.e., adding or subtracting facets in our model was followed by a change in predicted structural reliability. We posit that FPs are adaptations protecting Keratella from fractures to the lorica that may result from BFT incurred during predatory attack by copepods or while caught within the branchial chambers of daphnids 
    more » « less